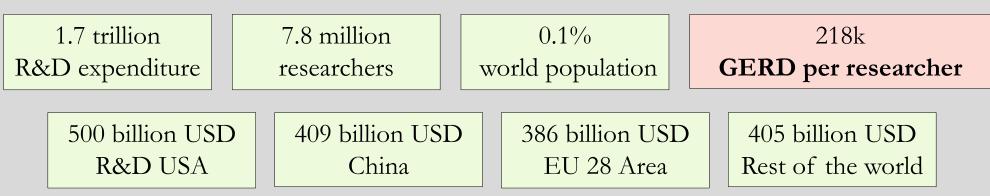
RESEARCH INFRASTRUCTURES: A NEW PARADIGM OF KNOWLEDGE PRODUCTION

INVESTING IN SCIENCE

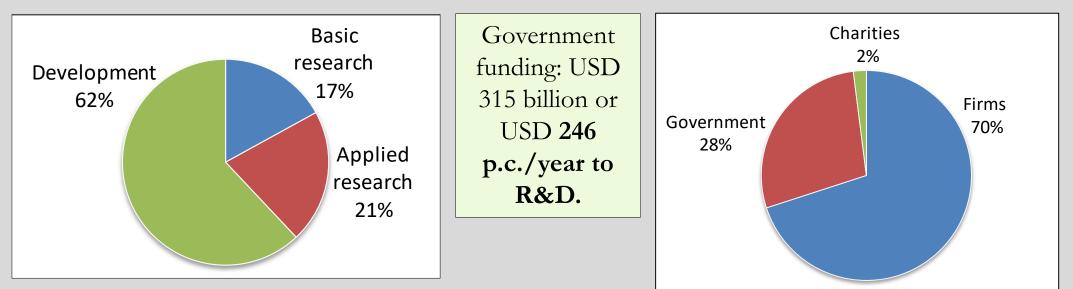
Social Cost-Benefit Analysis of Research Infrastructures

MASSIMO FLORIO

Massimo Florio University of Milan


> November 29, 2019 ECOOM, Brussels

OUTLINE


- Two paradigms of large-scale knowledge production
- The social value of Research Infrastructures (RIs)
- Conceptual framework
- A visual tour of case studies
- RIs as publication factories and human capital
- Learning hubs for hi-tech firms and Big Data
- From science to innovation
- The value of fun
- Further question: RIs as new public enterprises
- Conclusions

SCIENCE AND R&D

WORLD*:

OECD AREA:

• All values are in current USD.

• Sources: UNESCO and OECD 2015-2017

TWO PARADIGMS OF LARGE-SCALE KNOWLEDGE PRODUCTION

THE SIX CORE INGREDIENTS:

RESEARCH INFRASTRUCTURE

BIG SCIENCE

Identification of priorities within the scientific community (bottom-up)

International coalitions of funders (limited national ownership)

Flexible accessibility to common resources by multiple users and shared governance

Cosmopolitan human capital incubator

Open technological and scientific hubs and Big data generators

Public involvement essential to justify funding

Association with defense and military-industrial complex of the major powers **(top-down)**

Government budgets secure the **national ownership** of science

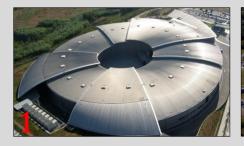
Rigid mission and governance

Recruitment of best minds but **politically** loyalty required

Secrecy on technologies, research methods and results

Selective exposure to **apologetic** press coverage

TWO PARADIGMS OF LARGE-SCALE KNOWLEDGE PRODUCTION

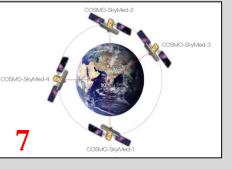

RI DEFINITION

- «Research infrastructures are facilities, resources, and services
- used by the **research communities** [...]
- may be used beyond research, e.g. for education or public services
- major scientific equipment
- knowledge-based resources such as collections, archives, or scientific data
- e-infrastructures
- 'single-sited', 'virtual' or 'distributed' » (European Commission 2017)
- ... and mobile as probes, satellites, oceanographic vessels, etc.

	300 major RIs in	300,000 scientists in	1 million scientists are RI users
Guess:	EU	EU	World

1032 RIs in the ESS database and see also Del Bo (2016) https://portal.meril.eu/meril/static/static_documents

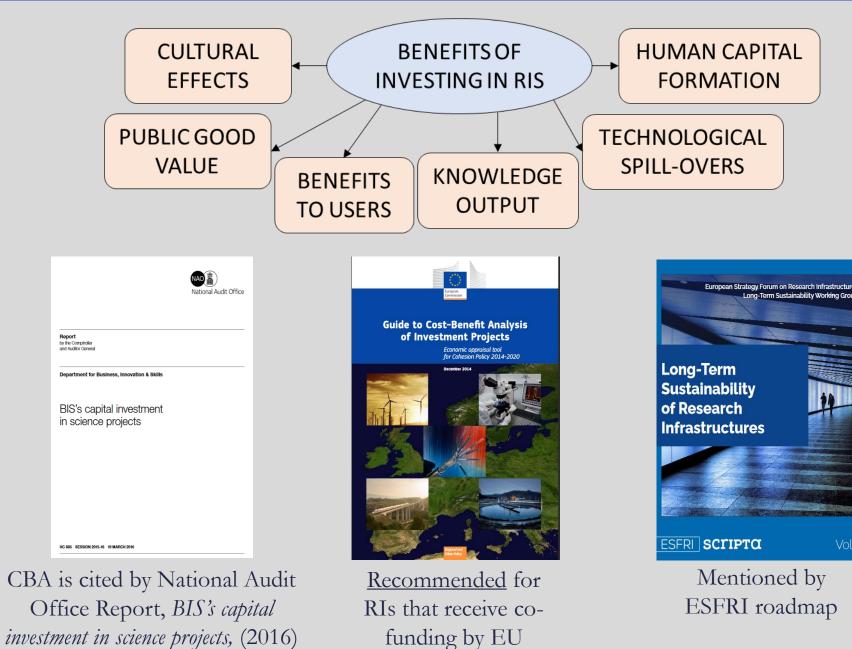
A VISUAL TOUR OF RI CASE STUDIES

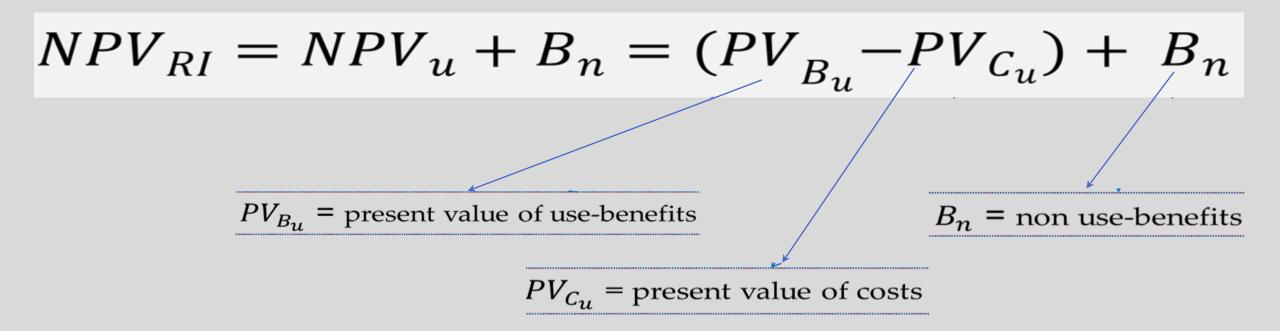


 Alba Synchrotron, Barcelona
 Diamond Light Source, Didcot (UK)
 CNAO Hadron Therapy, Pavia

4: Large Hadron Collider, CERN

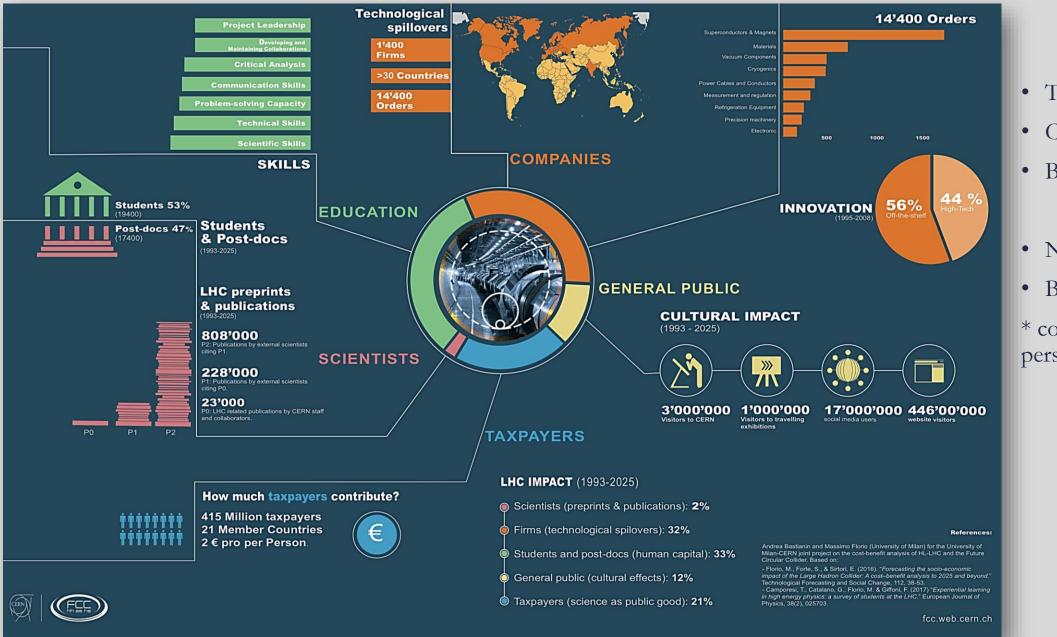
5: Square Kilometre Array, ZA and AUS6: Copernicus Sentinels7: COSMO SkyMed


8: ELIXIR Research Institute
9: EMBL-EBI
10: Broad Institute of MIT and Harvard
11: NIH


12: Department of Energy, USNational Laboratories13: ESFRI Roadmap

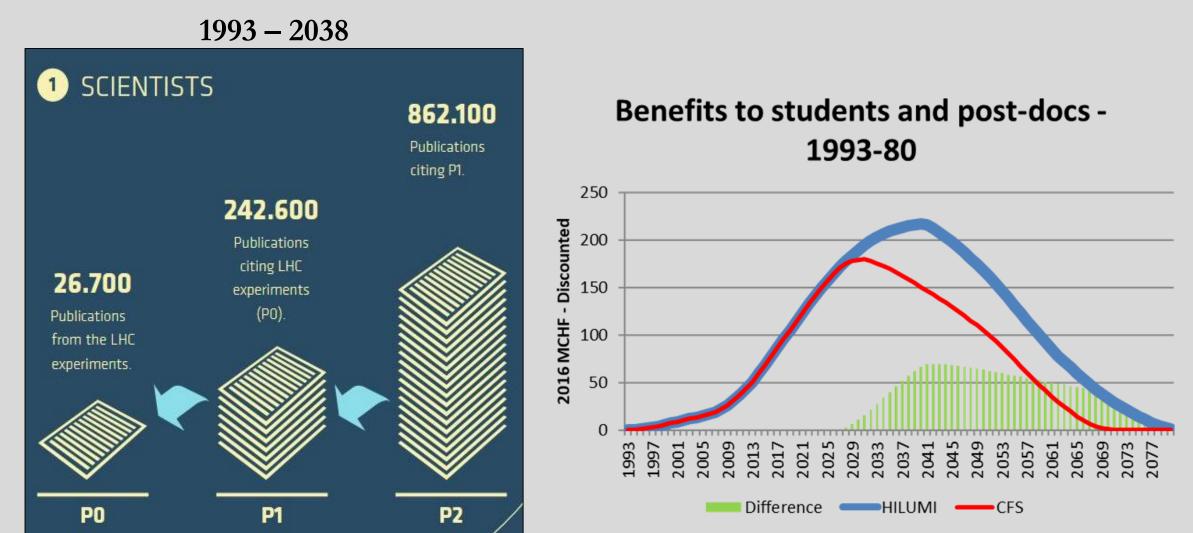
WHY CBA FOR RIS?

7


THE CBA MODEL FOR RIS

The expected economic net present value of the RIs infrastructure $[NPV_{RI})$] over the *time horizon (T)* is defined as the difference between expected *benefits* and *costs* valued at shadow prices and discounted at the *social discount rate (r)*.

See Florio, M. and Sirtori, E.(2016)


CBA – CERN LHC

- Time: 1993 2025
- Costs: € 13.5 B
- Benefits: € 16.4 B
- NPV: € 2.9 B
- B/C ratio: 1.2

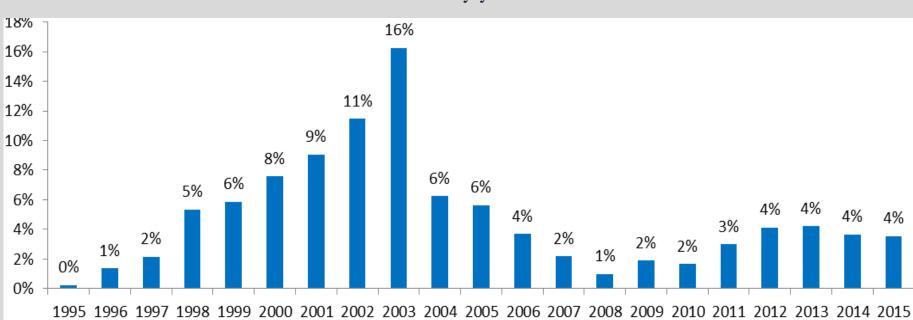
* cost of scientific personnel excluded

PUBLICATION FACTORIES AND HUMAN CAPITAL

• Social value of publication *per se* modest (MSV= marginal cost)

Source: LHC releated publications. http://fcc-cdr.web.cern.ch/webkit/press_material/Brochure_A5_SocioEconomic_EN.pdf

BENEFITS TO FIRMS


THE PROCUREMENT ACTIVITY OF CERN*

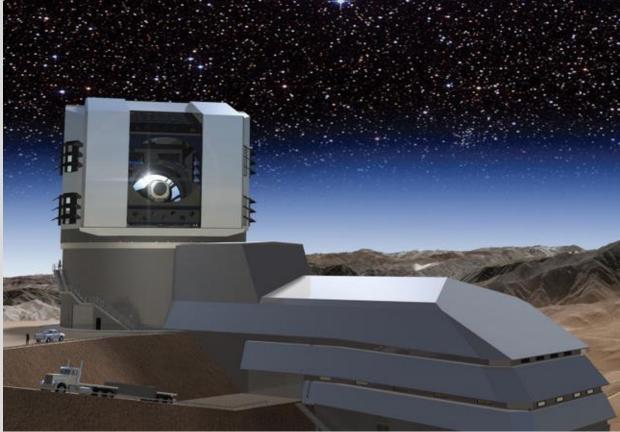
4,204 suppliers from 47 countries

65% low tech; 35% high tech

33,414 orders

4.3 Billion CHF** of expenditure (volume of orders)

Volume of the orders by year-%


SCIENCE VS FACEBOOK

LHC generates scientific data from one billion particle collisions per second	300 Pb 2014 Content in the Facebook data warehouse $(1\text{PB} = 10^{15})$	CERN with: • 10,000 servers • 174,000 physical processor cores • 350,000 logical cores = Pb <i>flow per day</i> , equivalent of 210,000 DVDs
LHC's data taki 150 Pb on disk 250 Pb on tape 100 Pb, Budap	ks, Meyrin e	The WLCG distributes 30-50 Pb of data per year to the scientific community of particle physicists for analysis, through 170 computing centers, in 42 countries

https://code.facebook.com/posts/229861827208629/scaling-the-facebook-data-warehouse-to-300-pb/, accessed on May 7, 2018. https://home.cern/about/computing, accessed on May 7, 2018.

THE LARGE SYNOPTIC SURVEY TELESCOPE (Cile)

Courtesy of @NPR

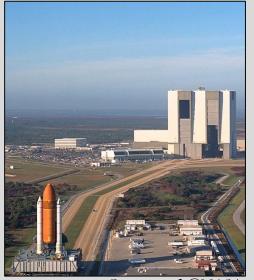
Sky observations in the mid-2020s: 200 PB of data

Challenge: software to process and store more than 30 TB (TB = 10^{12}) of data each night

Every night:

- 27-ft (8.4-m) mirror
- 3200 megapixel camera
- Each image the size of 40 full moons
- 37 billion stars and galaxies
- 10 year survey of the sky
- 10 million alerts
- 1000 pairs of exposures
- 15 terabytes of data

https://www.lsst.org, accessed on March 23, 2018.


PRODUCT SPIN OFFS

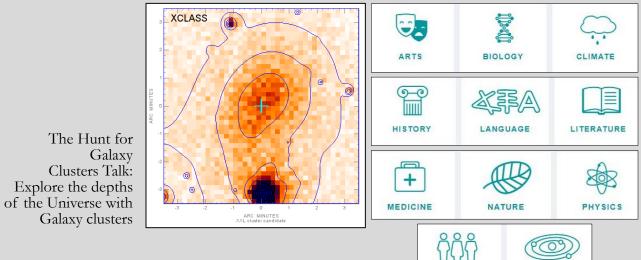
- Since 1976, NASA's Spinoff publication has featured nearly 2,000 NASA technologiesturned-commercial-products. There's more space in your life than you think!
- <u>spinoff.nasa.gov</u>

THE VALUE OF FUN

THE ECONOMICS OF 'WOW' AND CITIZEN SCIENCE

Courtesy of @NASA

- More than 1.5 million visitors per year
- 2015: 11 million followers on Facebook
- February 2018: NASA Facebook had 20,911,149 "likes" and 20,937,006 followers

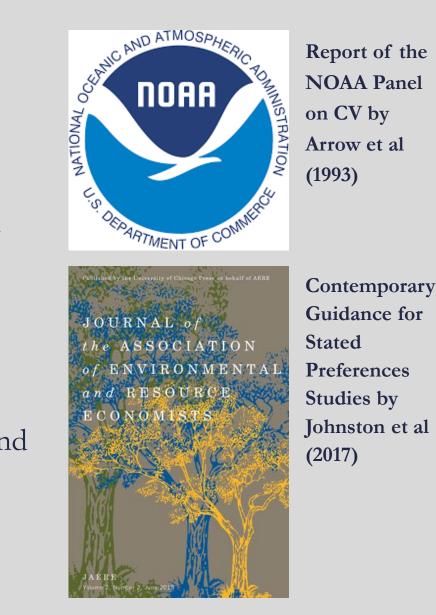

Galaxy

- EyeWire: online game ٠
- Supported by grants from the NIH
- Players are required to construct a 3D neuron map, starting from the retina of a mouse
- 250,000 players from more than 145 countries have signed up

- Public cultural value • of CERN (1993-2038):
- 5,1 mln CERN visitors ٠
- 775 mln visitors to the sites
- 1,6 mln visitors to CERN's exhibitions
- 29,3 mln of social media Users

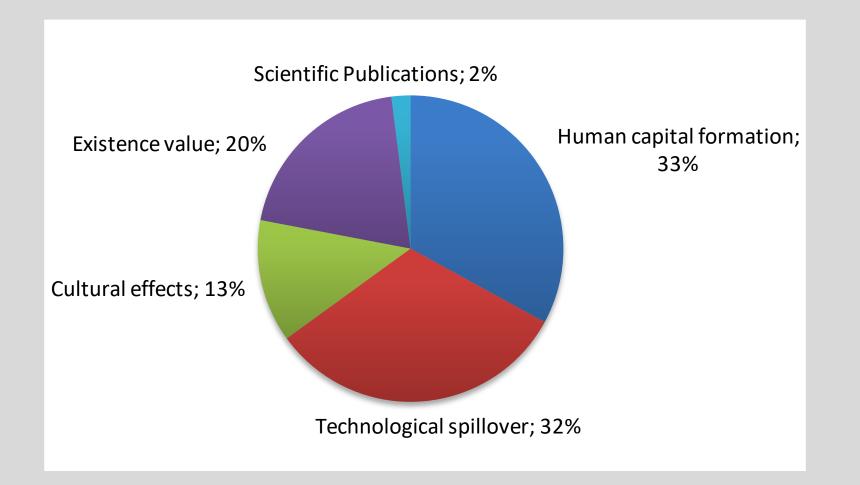
Zooniverse: online platform displays several projects. Possibility to *millions* of amateur scientists to analyze data in different domains

SOCIAL SCIENCE


Source: LHC releated publications. http://fcccdr.web.cern.ch/webkit/press material/Brochure A5 SocioEconomic EN.pdf

SPACE

BENEFITS TO CITIZENS


CONTINGENT VALUATION (CV) - EXPERIMENT

- Since earlier '90s the willingness-to-pay (WTP) has been used to value public goods
- Contingent Valuation (CV) is a statistical technique used to elicit the WTP by directly asking people how much they would pay for a specific public good
- Thousands of studies worldwide have used CV for eliciting the WTP for:
 - environmental goods (e.g. ecosystems, forests, and endangered species)
 - cultural goods (museums, theatres, monuments, and cultural heritage sites)

CBA CERN LHC TO 2035

DISTRIBUTION OF BENEFITS

FURTHER QUESTION: RIS AS A PUBLIC ENTERPRISES

- *Enterprises*: efficient combinations of capital, labor, and knowledge, with budgetary autonomy and managerial discretion, to produce knowledge
- *Public* in two perspectives: because they are funded by governments and because most of the science they produce is a public good
- Perhaps the RI paradigm points to a possible new avenue in the governance of **knowledge-based organizations** beyond science, based on collective intelligence and intrinsic motivation, with implications also for **mission-oriented innovation policies** in such fields as climate change, sustainable energy and transport, digital society, demographic transition

CONCLUSIONS

- RI as a new paradigm of production of science
- <u>Publication factories</u>: diminishing value of co-signing an empirical paper against increasing role of recognition of individual contribution to a project. "Publish or perish" versus "**Teaming or perish**". Economies of scale force universities to create academic **coalitions around RIs** and divest major internal facilities: this redefines universities
- <u>Technological hubs</u>: KT important but more incidental than deliberate, **large unexploited potential**
- <u>Big Data</u>: interplay between science and internet/knowledge based companies creates a **potential contradiction between open science and private appropriation of information**
- <u>Tracking innovation</u>: unsystematic (except perhaps at NASA) and need to develop new empirical strategies **(beyond patents)**
- <u>The value of fun</u>: science as a cultural good, surprisingly high-impact
- <u>Public good value</u>: crucial issue the extimation of **citizens/taxpayers WTP**
- Further question: knowledge based public enterprises for new public missions

Thank you massimo.florio@unimi.it www.massimoflorio.com

Courtesy of @CERN

"Investing in Science" MIT Press launch event of the book Tuesday 3 December 2019, 5.00 p.m – 6.30 p.m CERN, Globe of Science and Innovation

Live webcast available, you are welcome: https://webcast.web.cern.ch/event/i863086